# Optimal Arrangements for Distribution in Developing Markets

William Fuchs

Brett Green

David Levine

April 2017

### Motivation

Household investment in a number of "basic" technologies appears to have large benefits for developing economies.

- Mosquito nets
  - Malaria kills pprox 1M people each year
- Fertilizer
  - Key factor explaining lack of agricultural growth
- Water filters
  - Drinking water is considered a leading culprit for disease.
- Solar lights, efficient cookstoves, etc.

Yet the growth of private markets and rate of adoption has been slow

• The "product adoption puzzle"

About 590 million Africans live off the grid. Most of them rely on flame-based lamps powered by fossil fuels like kerosene. The light from these lamps is dim and comes with significant health and financial costs. A kerosene lamp may cost less than \$5, but fuel averages about \$57 per year. Sub-Saharan Africans burn about \$10 billion annually on kerosene, and worldwide, kerosene costs people without electricity \$36 billion.

-Study by the World Bank

### The Solution



# The Economics of Going Solar

- Typical household spends \$2 on kerosene per week
- Plus additional time and money to charge cell phone
- \$25 Firefly Mobile
  - Saves \$1.50 per week (conservatively)
  - Bond with coupon of 6% per week
  - Lifespan of  $\approx$  2 years
  - ▶ IRR > 300%

NB. Ignores health benefits.



Markets for these goods are not developing very fast...

• If solar lights are so great, why are they not being produced and sold in massive quantities?

### What hinders growth? Why the market failure?



# What hinders growth? Why the market failure?



Existing Literature: Demand-side frictions

- Credit/liquidity constraints
- Lack of information about benefits or quality
- Present bias
- Risk aversion

# What hinders growth? Why the market failure?



#### Our Focus: Supply-side frictions

- Credit/liquidity constraints
- Limited contract enforcement
- Uncertainty or aversion to experimentation
- Lemons problem

### Addressing demand side can have large effects

To address demand-side frictions:

- "Novel" offer (Levine and Cotterman, 2012)
  - Time payments: to ease credit constraints
  - Free trial: provides "experience"
  - Right to return: reduces risk
- Results looks promising
  - ► In randomized trial of 1,800 households in Kampala
  - ► Retail offer: 4% of consumers bought a stove.
  - ▶ Novel offer: 45% uptake, 97% of payments received.
- How to scale up?

- 1. Develop a simple model to capture vendor/distributor relationship
  - Use the model to derive "optimal" arrangements
- 2. Use framework to distinguish between potential impediments.
  - Develop several testable hypothesis
- 3. Test both the optimal arrangement and hypotheses in an experimental setting

# Key Features of the Environment

- "Principal" wants to hire an "agent" to sell some good
  - Non-profit organization with limited budget, or
  - Profit maximizing firm
- Agent has no access to capital
  - Enjoy limited liability
- Not all end consumers can pay up front
  - Some may miss payments or default
  - Sales revenue is stochastic
- Sales are not verifiable, contracts are not enforceable.
  - Agent can abscond with inventory or misreport sales
  - Arrangement must be incentive compatible

### Preview of Results

#### 1. Theoretical

- Optimal arrangement can be implemented with
  - An initial "small" endowment of the good
  - Fixed price for all future units
- Structure is optimal for both profit-maximizing firms and budget-constrained non profit organizations

#### 2. Experimental

- Optimal arrangement increased sales by 3-4x
- Credit constraints and consumer uncertainty both important
- Sales growth lower than model predicted
  - Difficulty saving
  - Failure of the "credit chain"

# Related Theoretical Literature

#### Dynamic Contracting

• Abuquerque and Hopenhayn (2004), DeMarzo and Fishman (2007a), DeMarzo and Sannikov (2006)

#### With Investment

• Thomas and Worrall (1994), Quadrini (2004), Clementi and Hopenhayn (2006), DeMarzo and Fishman (2007b), Biais et al (2010), DeMarzo et al (2012)

Self Enforcing

• Baker et al. (2002), Levin (2003)

#### **Our contribution**

- 1. An application with a simple implementation
- 2. Workhorse models in dynamic contracting useful for problems in development economics.

### The Model

- Principal (P) and an agent (A) can interact repeatedly over an infinite horizon: t = 0, 1, 2, ...
- P can produce good at marginal cost of c.
- A has access to a market in which she can sell goods up to k
   *k* units each period at a price p ∼ F on [p<sub>min</sub>, p<sub>max</sub>] with E(p) > c.
- A has no initial capital (i.e., cannot pay cash for goods) and enjoys limited liability.
- A can walk away at any time.

At the beginning of each period, t:

- P gives A some amount of goods,  $k_t$
- A sells the goods, realizes cash flow  $p_t k_t$  and reports  $\hat{p}_t$  to P
- A makes a transfer payment of  $T_t$  to P and consumes the remainder  $p_t k_t T_t$
- Move to next period, repeat...

Both P and A are risk neutral and maximize expected discounted payoff

• A is weakly more impatient  $(\delta_A \leq \delta_P)$ 

### First-Best Arrangement

Absent frictions (and  $\delta_A = \delta_P$ ), the P-optimal arrangement involves:

- Efficient Investment:  $k_t = \bar{K}$
- Full Extraction:  $T_t = p_t k_t$

Two frictions make this infeasible

- Enforcement: The agreement is not self-enforcing, the agent would rather run away with  $k_t$  units of inventory.
- Information: If investment is always efficient and transfer is fully extracting, the agent should always report  $p_{min}$ .

# Self-Enforcing Arrangements

- A pure strategy for P is a sequence of functions  $\sigma^P = \{k_t\}$ :
  - Specify the quantity given to A as a function of history
- A pure strategy for A is a sequence  $\sigma^A = \{\hat{p}_t, T_t\}$ :
  - Specify reports and transfers as a function of the A-history.
- An arrangement is *self-enforcing* if  $(\sigma^P, \sigma^A)$  constitute an equilibrium of the game.
- Focus on Pareto efficient equilibria, parameterized by A's continuation value *v*.

### Principal's Objective and relation to NGO Problem

• Principal's objective is

$$\max \sum_{t=0}^{\infty} \delta_P^t (T_t - ck_t), \qquad (P-obj)$$

subject to some constraints (C).

 Consider instead an NGO who attaches social value Δ<sub>S</sub> to each unit distributed and wants to maximize total social surplus

$$\max \sum_{t=0}^{\infty} \delta^t k_t \Delta_S$$

subject to constraints (C) as well as a budget constraint

$$\sum_{t=0}^{\infty} \delta_P^t (ck_t - T_t) \le B$$

#### Relation to NGO Problem

The dual of the NGO problem is to minimize the total cost of operation

$$\min\sum_{t=0}^{\infty} \delta_P^t (ck_t - T_t)$$
 (CMP)

subject to constraints (C) and achieving some level of social surplus

$$\Delta_S \sum_{t=0}^{\infty} \delta_P^t k_t \ge S$$

• Naturally, (CMP) is equivalent to

$$\max \sum_{t=0}^{\infty} \delta_{P}^{t} (T_{t} - ck_{t}).$$
 (P-obj)

# **Recursive Formulation**

$$\Pi(v) = \max_{K,T,V} E_p \left[ T(p,v) - \gamma K(v) + \delta_P \Pi(V(p,v)) \right]$$

subject to

$$egin{aligned} &\mathcal{T}(p,v) \leq p \mathcal{K}(v) & (\end{Liquidity}) \ &\mathcal{K}(v) \in [0, ar{k}] & (\end{Capacity}) \end{aligned}$$

$$\delta_{A}V(p,v) - T(p,v) \ge \delta_{A}V(\hat{p},v) - T(\hat{p},v)$$
(IC)

$$\delta_{\mathcal{A}}V(p,v) - T(p,v) \ge v_{out} = 0 \tag{PC}$$

$$\mathbb{E}[pK(v) - T(p, v) + \delta_A V(p, v)] = v$$
(PK)

Suppose that there is no uncertainty:  $p_{\min} = p_{\max} = \bar{p}$ 

- No information friction  $\implies$  can ignore (IC) constraint
- (PC) and (PK) require

$$\bar{p}K \leq v$$
,

otherwise agent will abscond.

- Principal must (inefficiently) restrict inventory level for low v
- Linearity of preferences and technology  $\implies$  solution is "bang-bang"

# **Optimal Arrangements without Information Frictions**



Agent's Value

# Implementing the Optimal Arrangement

#### Proposition

The optimal agreement can be implemented with

- An initial endowment  $k_0^* < \bar{K}$
- A fixed price  $q^* < \bar{p}$

*P* gives *A* the initial endowment and charges the fixed price for all future units at which *A* can purchase units of the good.

Intuition

- Endowment eases credit constraint
- Discounted price incentivizes reinvestment

### **Dynamics**



Dynamics begin at the red asterisk and moves rightward until agent's value reaches  $\delta_A \bar{V}$  above which investment is efficient and the agent consumes.

### Starting Small

- $N^* \equiv \min\{t : k_t = \bar{k}\}$  is the "time-to-capacity"
- $\gamma \equiv \frac{\delta_P}{\delta_A}$  is the agent's relative impatience
- $\mu \equiv \frac{\bar{p}-c}{\bar{p}}$  is the profit margin

#### Proposition

The optimal initial endowment is  $k_0^* = \delta_A^{N^*} imes ar{k}$ , where

• If 
$$\delta_A = \delta_P$$
 then  $N^* = \left\lceil \frac{1-\mu}{\mu} \right\rceil$ 

• If  $\delta_A < \delta_P$  then

$$\mathcal{N}^* = \left\lceil rac{\log\left(rac{\mu}{1+\gamma(\mu-1)}
ight)}{\log(\gamma)}
ight
ceil$$

#### Corollary

The size of the optimal initial endowment is

- (i) is increasing in the profit margin
- (ii) decreasing in the relative impatience of the agent

Implication: Starting small is particular important when

- Profit margin is low (or even negative)
- Agent is relatively impatient

### Risky Cash Flows and Information Frictions

- When  $p_{\min} \neq p_{\max}$ , P must provide incentives for truthful reporting:
  - If agent reports high  $\hat{p}_t$ , P rewards A with higher future k
  - If agent reports low  $\hat{p}_t$ , P punishes A with lower future k
- Notice, this features is already achieved by the fixed-price arrangement
  - When A realizes high  $\hat{p}_t$ , has more money to buy  $k_{t+1}$
- But may also be optimal to save for  $k_{t+2}, k_{t+3}, ...$  in case  $p_{t+1}$  is low

#### Proposition

Suppose cash flows are risky and privately observed by the agent. The optimal agreement can be implemented with:

- An initial endowment  $k_0^*$
- A fixed price q<sub>0</sub>\*
- A savings account with return  $1/\delta_A$

*P* gives *A* the initial endowment, charges the fixed price for all future units, and allows *A* to deposit/withdraw from the savings account.

# Dynamics with precautionary savings



Agent Value

Optimal arrangement with risky cash flows and precautionary savings.

More Intuition

Model assumes vendors have no wealth or access to credit

• Hence, the need to provide an initial endowment

#### Hypothesis 1: Credit Constraints

If the agent has sufficient wealth or access to credit then performance of arrangement should not depend on the size of the initial endowment.

• By varying the size of the initial endowment, we can evaluate the extent to which credit constraints are relevant.

Model assumes vendors are not risk averse nor "pessimistic" about profitability

• No need to provide additional incentives to reinvest

#### Hypothesis 2: Vendor Uncertainty

If the vendor is risk averse or pessimistic about the ability to sell the good for a profit then providing the "right to return" unsold units should improve the performance of the arrangement.

### Testable hypothesis

Model takes household demand as given/fixed:

- But, we know demand-side frictions are important...
- Credit constraints, uncertainty, lemons problem, risk-aversion etc.

#### Hypothesis 3: Consumer Uncertainty

If consumers are uncertain about quality/benefits or liquidity constrained then providing agent with a "loaner" designated to provide customers with a free-trial period before their purchase should increase the performance of the arrangement.

• In theory, agent could do this on her own. In practice, most were not willing to.

# Field Experiment

Objectives:

- 1. Test hypothesis of regarding factors inhibiting market development
- 2. Evaluate the performance of the optimal arrangement

#### Background

- Partnership with BRAC
- Recruited vendors from BRAC network of CHPs across 8 branches in rural Uganda
  - Branch has 4 zones,
  - Zone has 10+ MF meetings
  - ▶ 20+ women per MF meeting
  - We recruited one women per MF meeting
    - Geographically dispersed, catchment area  $\approx$  200 households
- Recruitment meeting: presentation/training
  - Opportunity to buy light on credit: experience + screening

#### Experimental design

Recruits were offered an arrangement

- All arrangements gave vendors option to buy lights at wholesale price (\$20)
  - Consistent with  $\delta_A = 0.85$
- Three orthogonal randomizations  $(2 \times 2 \times 2)$ 
  - 1. Trade credit (up to 4 lights)
    - Consistent with  $\delta_P=$  0.98,  $\bar{K}=$  10
  - 2. Right to return
  - 3. Loaner light
- Monthly orders and restocking
  - Delivered to BRAC branch
  - Vendors placed orders via mobile phone
- Tracked sales for 12 months

### Vendor characteristics

| Education                                                                | None<br>28%                     | Primary<br>60% | Secondary<br>12% |       |
|--------------------------------------------------------------------------|---------------------------------|----------------|------------------|-------|
| Occupation                                                               | Retail                          | Agriculture    | Livestock        | Other |
|                                                                          | 51%                             | 40%            | 13%              | 40%   |
| Age                                                                      | Mean                            | Median         | Std Dev          |       |
| Experience                                                               | 39.1                            | 38             | 9.55             |       |
| Work hours/day                                                           | 9.4                             | 6              | 10.2             |       |
| Children                                                                 | 8.46                            | 8              | 3.98             |       |
| Residency                                                                | 4.91                            | 5              | 2.74             |       |
| Travel time to BRAC                                                      | 17.8                            | 15             | 13.3             |       |
| Kerosene expenditure                                                     | 58.3                            | 60             | 37.7             |       |
| Pre-solar                                                                | 3.264                           | 3 000          | 2 799            |       |
| Post-solar<br>Married<br>Own mobile phone<br>Use SMS<br>Use Mobile Money | 305<br>70%<br>98%<br>47%<br>83% | 0              | 826              |       |

### Credit constraints



# Consumer uncertainty / lack of information



### Consumer uncertainty / lack of information



# Vendor uncertainty / lack of information



#### Comparison across offer types



$$\begin{split} \log(1 + \text{total sales}_i) &= \alpha + \gamma \times \text{credit}_i \\ &+ \beta \times \text{loaner}_i \\ &+ \delta \times \text{right to return}_i + \epsilon_i \end{split}$$

- Vendor is unit of observation
- Standard errors clustered at the branch level

# **Predicting Sales**

.

-

|                       | (1)                | (2)                | (3)                | (4)                | (5)                | (6)                           |
|-----------------------|--------------------|--------------------|--------------------|--------------------|--------------------|-------------------------------|
| Credit                | 1.086***<br>(5.11) | 1.078***<br>(5.03) | 1.087***<br>(5.13) | 1.078***<br>(5.05) | 1.371***<br>(4.98) | 1.342***<br>(4.65)            |
| Loaner                |                    | 1.232**<br>(2.77)  |                    | 1.227**<br>(2.75)  | 1.238**<br>(2.81)  | 0.776 (1.61)                  |
| Right to Return       |                    |                    | -0.122<br>(-1.45)  | -0.100<br>(-1.15)  | -0.380*<br>(-2.28) | -0.373*<br>(-2.32)            |
| Right × No Credit     |                    |                    |                    |                    | 0.582*<br>(2.34)   | 0.538*<br>(1.99)              |
| First wave            |                    |                    |                    |                    |                    | 0.690 <sup>**</sup><br>(2.75) |
| R <sup>2</sup>        | 0.266              | 0.407              | 0.269              | 0.409              | 0.428              | 0.512                         |
| Ν                     | 129                | 129                | 129                | 129                | 129                | 129                           |
| t statistics in paron | thesis             |                    |                    |                    |                    |                               |

t-statistics in parenthesis

## Survey Responses: Marketing and Sales Strategies

- Main Advantage of Solar?
  - ► Save Money (51%), Safety (28%), Health (2%)
- Customer Base?
  - ► Door to Door (62%), Friends and family (38%), Church (32%), BRAC group (17%)
- Retail offer to customers?
  - ► Cash (70%), Installments (11%), Layaway (13%), ROSCA (6%)
- Demand-side barriers?
  - ▶ Money (55%), Product knowledge (26%), Past bad experience (28%)

# Summary of Findings

- Credit constraints matter
  - Optimal arrangement increased sales by 3-4x
- Consumer uncertainty/information also important
  - Providing "loaner" light had significant positive effect
- Vendor uncertainty/information appears less important
- Growth rates lower than predicted by the model
  - ► Average vendor: selling 1.5 lights/month after 4 months

### Sales dynamics



### What Inhibited Growth?

#### 1. Difficulty saving

- Vendors noted difficulty retaining cash from sales until the next order, usually a few weeks away
- Saving is notoriously difficult in rural Africa
  - e.g., Karlin et al. (2014)
- 2. Failure of the "credit chain"
  - Most vendors were unwilling to offer an installment plan to customers (Despite our encouragement to do so)
  - ▶ 70% required customers to pay for light in full before ordering
  - ▶ 55% acknowledge that \$\$ was the primary demand-side barrier

# Is Technology the Answer?

- 1. Mobile Money
  - Payments go directly from consumer to producer
  - No need for vendor to handle cash
  - Both mobile phones and mobile money are widespread
- 2. A "kill" switch (+ PAYG)
  - Turns system into a "brick"
  - System won't work if consumer doesn't pay
  - No incentive for vendor to abscond with inventory

Combining these two features effectively solves:

- Frictions in our model
- Inability to save (for both consumers and vendors)
- Credit chain failure

## The M-Kopa Model

#### **M-KOPA IV Solar Home System**

| <ul> <li><b>1,700 /=</b></li> <li>Per day + 130,000 /= deposit</li> <li>SW high quality solar panel</li> <li>3 LED upgraded light bulbs with<br/>cables and switches</li> <li>Upgraded, rechargeable radio</li> <li>1 year warranty</li> <li>Customer ownership within 1 year</li> <li>" distign TU coursely for the main</li> </ul> | Kenya Tanzania Uga                                                                                                                                                                                                                                               | inda                                                                                                                                                                        |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Phone charging USB with 5     standard connections                                                                                                                                                                                                                                                                                   | <ul> <li>1,77</li> <li>Per day + 1</li> <li>8W high quality solar panel</li> <li>3 LED upgraded light bulbs with cables and switches</li> <li>1 LED upgraded, portable and rechargeable torch</li> <li>Phone charging USB with 5 standard connections</li> </ul> | 000 /=<br>130,000 /= deposit<br>• 1 Upgraded, rechargeable radio<br>• 1 year warranty<br>• Customer ownership within 1 year<br>• 16° digital TV available from mid-<br>2016 |

- 35 down + 0.50/day for one year  $\implies$  PV = 150-185
  - Adding kill switch basically doubles retail price

M-Kopa has sold over 500,000 systems in East Africa and is growing rapidly

- Evidence that these frictions are really first order!
- But, it is expensive....
- Kill switch likely prohibitively costly for products that do not run on electricity
  - e.g., cookstoves, water filters, malaria nets

**Next question:** how far can we get with mobile money+dynamic incentives, but without the (expensive) kill switch?

# Why have precautionary savings?

- A 's consumption is delayed in order to insure against negative shocks.
  - e.g.,  $p_t = p_{\min}$  for t = 1, 2, 3, ...
- However, there is a cost associated with precautionary savings
  - A is relatively impatient (unless  $\delta_A = \delta_P$ )
- Optimal arrangement trades off insurance motive vs relative impatience
  - For  $\delta_A \ll \delta_P$ , no precautionary savings
  - For  $\delta_A = \delta_P$  and  $p_t$  sufficiently risky, precautionary savings until P's participation constraint binds.

