Adverse Selection, Slow Moving Capital and Misallocation

William Fuchs* Brett Green* Dimitris Papanikolaou[†]

*Haas School of Business University of California-Berkeley

[†]Kellogg School of Management Northwestern University and NBER

NBER Asset Pricing Meetings, April 2015

Introduction			
Motivat	ion		

To maximize efficiency, resources need to be allocated efficiently. Yet,

- Resource misallocation is costly and widespread
 - $\rightarrow\,$ especially during recessions and in developing countries.
- "Capital" moves slowly in response to shocks.

What inhibits the efficient allocation of resources and generates slow movements in capital flows?

- Literature typically assumes exogenous adjustment cost.
 - $\rightarrow\,$ Recent work argues these costs vary over time and the business cycle.

What do these costs represent? Why do they vary over time?

Main Idea

• A theory of misallocation and slow movements in capital reallocation based on adverse selection.

How it Works?

- Starting point: "capital" reallocation requires market transactions.
 - \rightarrow Physical, human, financial or existing matches (e.g., firm division)
- The equilibrium involves inefficient delays in these transactions.
 - $\rightarrow~$ Capital is heterogeneous.
 - $\rightarrow\,$ Capital owners are better informed.
 - $\rightarrow\,$ Will be more anxious to sell less profitable capital units.

Introduction			
Our Cont	ribution		

Incorporate adverse selection into a dynamic GE model

• Leads to endogenous reallocation cost and persistence in aggregate quantities

Our focus: How does equilibrium reallocation depend on the economic environment?

- Lower interest rates slows down reallocation
- More volatile shocks mitigate consequences of adverse selection.
 - \rightarrow Speed up reallocation.
- Consumption smoothing motives also speed up reallocation
 - $\rightarrow~$ Larger downturns followed by faster recoveries
- Hedging motives can halt reallocation entirely
 - $\rightarrow~$ Capital remains persistently misallocated.

Introduction			
Our Cont	ribution		

Also provides a micro-foundation for convex adjustment costs.

- Equilibrium dynamics resemble those in convex adjustment cost models.
- Dynamics are pinned down by economic primitives.
 - $\rightarrow\,$ resembles 'i-dot' models if innovations and quality are complements
 - $\rightarrow~$ resembles 'k-dot' models if they are substitutes

One advantage: Link changes in adjustment costs to changes in the economic environment e.g.,

- Higher productivity dispersion exacerbates consequences of adverse selection and slows down reallocation
 - $\rightarrow\,$ corresponds to higher adjustment costs
 - $\rightarrow\,$ consistent with empirical evidence

	Basic Idea		
The envir	onment		

- Two distinct **locations** $\ell \in \{A, B\}$.
 - $\rightarrow~$ Could represent sectors, industries, physical locations
- Mass M > 1 of **firms** in each location
 - $\rightarrow~$ Firms can operate capital only in their own location
- Unit mass of "**capital**" of varying quality: $\theta \sim F$ on $[\underline{\theta}, \overline{\theta}]$
 - $\rightarrow~$ Quality is privately observed by owner of capital
- **Output** depends on capital quality θ and location

$$dy_\ell(heta) = \pi_\ell(heta) dt, \qquad ext{where } \pi_\ell' > 0$$

 \rightarrow Sector *B* is more productive, but capital initially **allocated** to sector *A*.

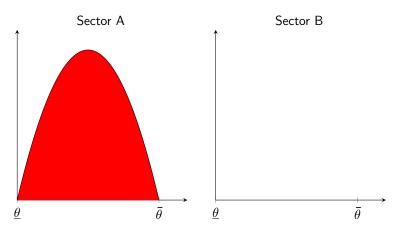
• Fixed discount rate, r (for now)

	Basic Idea			
Reallocat	ion via m	arkets		

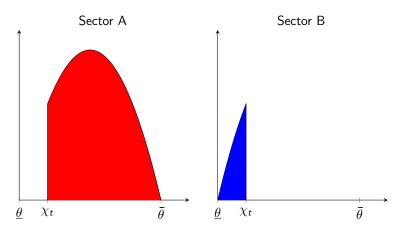
- To reallocate capital, trade must occur.
- Firms can trade capital in a spot market.
- Market is open continuously.
 - $\rightarrow\,$ No search, transactions, or adjustment costs.
- The information friction
 - $\rightarrow\,$ Capital is heterogeneous in quality: $\underline{\theta}<\overline{\theta}$
 - $\rightarrow~$ Quality is privately observed by owner.
 - $\rightarrow~$ Lemons condition

$$\pi_A(\overline{ heta}) > \int \pi_B(heta) dF(heta)$$

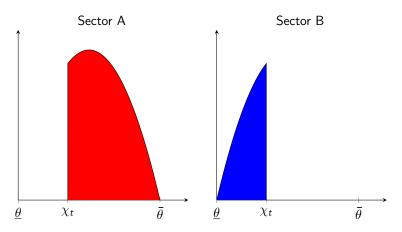
Equilibrium		Basic Idea		
	Equilibriu	ım		

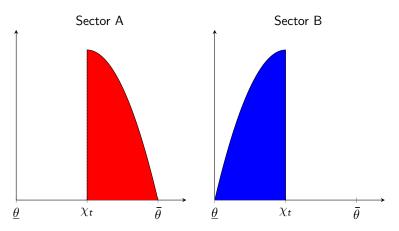

- Firms in A optimally choose when to sell capital. Their tradeoff
 - $\rightarrow~$ Sell now: Capture productivity gains in new sector
 - $\rightarrow\,$ Sell later: Potentially get a better price
- Firms in B are competitive.
 - ightarrow Value capital at $V(heta)=\pi_B(heta)/r$ for heta-unit
- Equilibrium
 - 1. Sector A firms optimize given prices
 - 2. Sector B firms break even given A firms' policy
 - 3. Market clearing

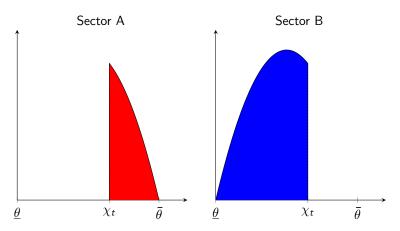
	Basic Idea			
Equilibr	ium prop	erties		

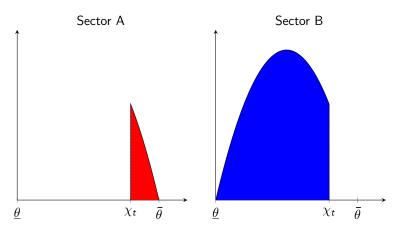

- First-best reallocation is not an equilibrium.
 - \rightarrow Sector A firms with highest quality capital prefer not to trade.
- No atoms at t = 0.
 - $\rightarrow\,$ Prices would jump...also not an equilibrium.
- Equilibria must satisfy the skimming property:
 - → If it is optimal for θ to trade at time *t*, then strictly optimal for all $\theta' < \theta$ to trade at (or before) time *t*.
- Therefore, the lowest type of capital remaining in A at time t, denoted by χ_t , must weakly be increase over time.
 - $\rightarrow\,$ We construct an equilibrium in which it is strictly increasing.
 - $\rightarrow~$ Type is "revealed" at the time of sale

	Basic Idea			
Equilibriu	ım dynan	nics		

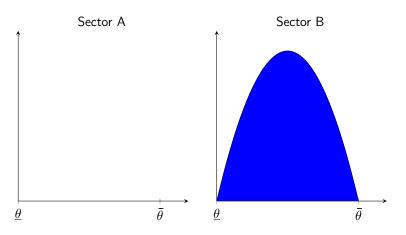

At t = 0:


	Basic Idea			
Equilibri	u <mark>m d</mark> yna	mics		


	Basic Idea			
Equilibri	um dyna	mics		


	Basic Idea			
Equilibri	um dyna	mics		

	Basic Idea			
Equilibri	um dyna	mics		



	Basic Idea			
Equilibri	um dyna	mics		

	Basic Idea			
Equilibri	um dyna	mics		

For $t > \tau(\overline{\theta})$

The equilibrium is characterized by

$$P_t = \frac{\pi_B(\chi_t)}{r}$$

(Break Even Condition)

The equilibrium rate of skimming is

$$\dot{\chi}_t \equiv rac{d\chi_t}{dt} = r \left(rac{\pi_B(\chi_t) - \pi_A(\chi_t)}{\pi'_B(\chi_t)}
ight)$$

• The rate of capital reallocation is $k'(t) = \dot{\chi}_t dF(\chi_t)$

	Basic Idea		
Example			

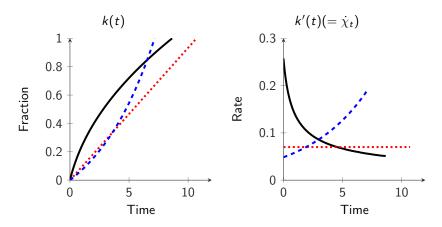
• Suppose that

$$\pi_{B}(\theta) = \alpha\theta + \beta > \pi_{A}(\theta) = \theta$$

- $\rightarrow~\alpha$ captures the importance of quality
- $\rightarrow~\beta$ is the level of the innovation/shock
- The differential equation for the cutoff type is linear in χ

$$\dot{\chi}_t = r \cdot \frac{(\alpha - 1)\chi_t + \beta}{\alpha},$$

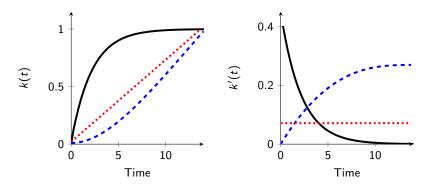
• Therefore reallocation rate proportional to $e^{\left(rac{lpha-1}{lpha}
ight) rt}$


 $\rightarrow~$ Case 1. $\alpha = 1 \rightarrow \dot{\chi_t}$ constant over time as in to 'kdot' model

- $\rightarrow~$ Case 2. $\alpha > 1 \rightarrow \dot{\chi_t}$ increasing over time as in 'idot' model
- $\rightarrow~$ Case 3. $\alpha < 1 \rightarrow \dot{\chi_t}$ decreasing over time as in 'ik' model

 Introduction
 Basic Idea
 Stationary Model
 Impulse Responses
 Risk Aversion
 Conclude

 Example:
 reallocation dynamics
 Conclude
 Conclude
 Conclude
 Conclude


For F uniform:

• Dynamics implied by $\alpha = 1$ (red), $\alpha < 1$ (black), $\alpha > 1$ (blue).

For comparison:

• Dynamics implied by 'kdot' (red), 'ik' (black) and 'idot' (blue) models.

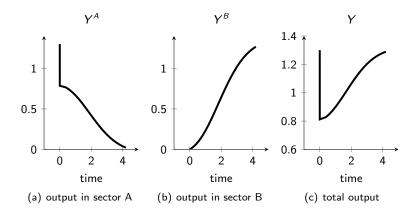


Figure: Response to a sectoral productivity shift, where at t = 0, sector B becomes the more productive sector. The economy recovers slowly from a productivity shift even though aggregate potential output is unchanged.

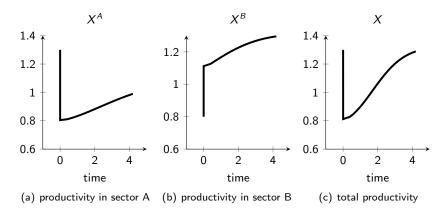


Figure: Productivity is increasing across both sectors.

	Basic Idea			
Key take	away and	next steps		

- So far,
 - $\rightarrow\,$ Adverse selection as a mechanism for slow movements in capital flows
 - $\rightarrow~$ An endogenous "adjustment cost"
- How does this "cost" and the equilibrium rate of reallocation depend on the underlying economic environment?
 - \rightarrow Frequency of shocks
 - $\rightarrow~$ Dispersion of capital productivity
 - $\rightarrow \mbox{ Interest rate }$
 - $\rightarrow\,$ Household's risk aversion and consumption smoothing motives

		Stationary Model		
Recurring	g shocks			

Locations are symmetric:

- ϕ_t is a Markov process with transition probability λ
- Output per θ -unit is given by

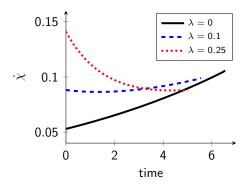
	Location				
State	π_A	π_B			
$\phi_{\mathcal{A}}$	$\pi_1(\theta)$	$\pi_0(\theta)$			
ϕ_B	$\pi_0(\theta)$	$\pi_1(\theta)$			

where $\pi_1(\theta) > \pi_0(\theta)$

- Existing capital depreciates and new capital flows in at rate δ .
 - $\rightarrow~$ New investment flows into most profitable sector
 - \rightarrow Efficient sector maintains full support over $[\underline{\theta}, \overline{\theta}]$.

How does shock frequency affect equilibrium reallocation?

- With recurring shocks, prices account for expected future **costs of** reallocation.
- As a result, capital trades at a "discount" due to its illiquidity.
 - $\rightarrow\,$ Higher θ less liquid \rightarrow trades at a larger discount.
 - $\rightarrow\,$ Influences reallocation decision, which in turn influences discount...
- As λ increases there are two effects
 - \rightarrow Level effect (cost of waiting): how much are prices depressed?
 - * Tends to slow down reallocation
 - $\rightarrow\,$ Slope effect (benefit of waiting): how much do prices flatten?
 - * Increasing illiquidity discount mitigates adverse selection!
 - * Tends to speed up reallocation



The slope effect dominates (at least initially)

 $\text{Higher } \lambda \implies \text{larger discount for higher } \theta$

- \implies low types have less incentive to delay
- \implies so they reallocate faster

- More frequent shocks tend to mitigate the adverse selection problem. \rightarrow Market "adapts" with faster reallocation.
- However, reallocation costs are incurred more frequently so overall:
 - $\rightarrow\,$ prices and efficiency decrease with $\lambda.$

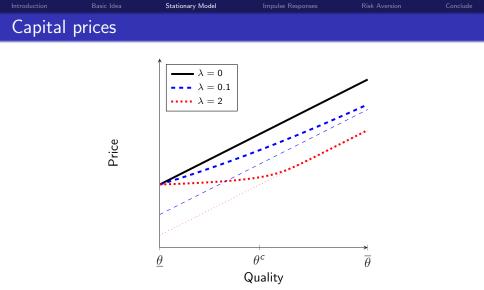
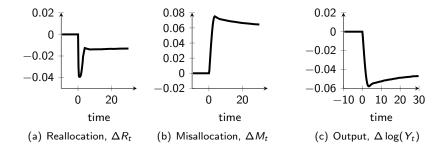
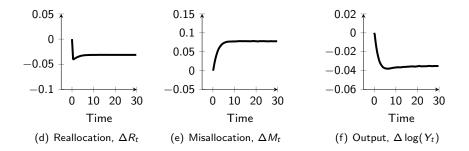


Figure: The effect of transitory shocks on the price of capital. Dotted line represent transaction price as function of quality. The faint dotted lines represent the hypothetical value of a unit of capital if it is never reallocated.


			Impulse Responses				
Response to structural changes							

- Time variation in adjustment costs as (reduced form) explanation of empirical patterns
 - $\rightarrow\,$ Eisfeldt and Rampini, 2006: Reallocation is procyclical even though benefits appear to be countercyclical
 - $\rightarrow\,$ Justiniano, Primiceri, Tambalotti, 2011: Shock to adjustment costs responsible for significant fraction of B-C fluctuations

How can we interpret these shocks?

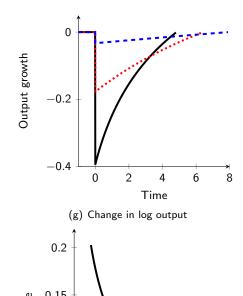

- Consider unanticipated changes to the model's structural parameters
 - 1. Increase in dispersion of capital quality $\overline{\theta} \underline{\theta}$
 - 2. Reduction in the interest rate: r

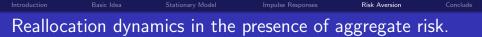
- An increase in the dispersion of quality of *new* capital units exacerbates the adverse selection problem.
 - $\rightarrow\,$ Leads to lower reallocation, lower efficiency and reduced output.

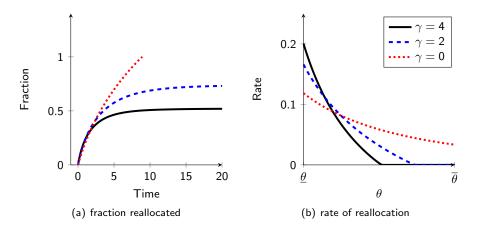
- Standard adjustment cost model: lower *r* increases benefits from reallocation \rightarrow faster reallocation
- Our model: lower r decreases the cost of delaying
 - $\rightarrow~$ slows down reallocation

			Risk Aversion	
Risk aver	se househ	olds		

- We also consider a closed economy with CRRA households
 - $\rightarrow~$ Assume complete markets.


Additional Implications:


- 1. Due to consumption smoothing motives
 - $\rightarrow\,$ Interest rate rises upon arrival of sectoral shock
 - $\rightarrow\,$ Higher interest rates increase cost of delay $\implies\,$ faster reallocation
 - $\rightarrow~$ Larger downturns are followed by faster recoveries
- 2. Risk aversion leads to a
 - $\rightarrow\,$ Motive for diversification, can halt reallocation process entirely


 Introduction
 Basic Idea
 Stationary Model
 Impulse Responses
 Risk Aversion
 Conclude

 Large downturns followed by sharp recoveries

Recovery from a negative productivity shock to sector A.

			Conclude
Conclusio	n		

- Proposed a mechanism for generating slow movements in capital flows based on adverse selection
 - $\rightarrow~$ A micro-foundation for convex adjustment costs
 - $\rightarrow~$ Particularly relevant for divestment decisions
- Reallocation "costs" intimately linked to economic environment
 - $\rightarrow\,$ Shock volatility $\rightarrow\,$ lower and flatter prices $\rightarrow\,$ faster reallocation
 - $\rightarrow~$ Productivity dispersion $\rightarrow~$ amplifies misallocation
 - $\rightarrow~$ Reduction in interest rates \rightarrow slows reallocation
 - $\rightarrow~$ Sufficient risk aversion \rightarrow can halt reallocation entirely
- A number of potential applications to explore
 - $\rightarrow~$ Physical capital reallocation across firms
 - \rightarrow Labor mobility
 - $\rightarrow~$ New investment under financial constraints
 - $\rightarrow~$ IPOs or merger waves

				Conclude
Empirical	evidence	?		

- Constructing test is difficult since mechanism relies on unobservables.
 - $\rightarrow\,$ High "types" may reallocate faster if type is observable.
- Need a setting where quality is unobservable to the market but observable to the econometrician. Perhaps ex-post...
- Testable Predictions:
 - 1. Higher types reallocate (sell) after longer delay.
 - 2. Price is fully revealing at time of sale.
- One possibility is the IPO market...
- Anecdotal evidence of strategic delay in the IPO market
 - → Business Week (May 27, 2009): "If the stock market does not stabilize, many of the most promising companies can afford to sit on the sidelines."